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Neutron scattering from aerosols: Intraparticle structure factor, Guinier analysis
of particle speed, and crossed beam kinematics

Gerald Wilemski
Department of Physics and Cloud and Aerosol Sciences Laboratory, University of Missouri–Rolla, Rolla, Missouri 65409

~Received 2 August 1999!

A theoretical formalism for neutron scattering from systems of particles is applied to liquid nanodroplet
aerosols. A term arising from intraparticle, intermolecular correlations is identified. The kinematical theory of
two body scattering is recast into a form convenient for interpreting the results of experiments with crossed
beams of neutrons and aerosol particles. Based on a theoretical analysis of the scattered intensity in the Guinier
region, a method for determining the particle velocity directly from the experimental data is outlined. The
method is not restricted by assumptions about particle shape, composition, uniformity, or size distribution.

PACS number~s!: 82.70.Rr, 61.12.Ex, 61.46.1w, 61.12.Bt
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I. INTRODUCTION

Small angle neutron scattering~SANS! is an important
technique for studying the structure of materials at the
nometer scale@1#. When applied to aerosols containing nan
particles, SANS permits thein situ determination of the aero
sol size distribution and particle characteristics. T
information can lead to improved understanding of aero
formation processes, which are of great interest for both f
damental and practical reasons@2#. Quite recently, aerosol
generated by homogeneous condensation have been st
with SANS using a supersonic nozzle to generate a ste
aerosol flow directly in the path of the neutron beam@3,4#.

The analysis of these crossed beam scattering mea
ments depends, in part, on the resolution of an interes
complication stemming from the relative motion of the ne
trons and aerosol particles. The aerosol particles in th
experiments are massive, typically containing more than4

water molecules. The nozzle flow field is essentially one
mensional, and the mean particle velocity normal to the fl
direction is less than 1% of the flow velocity. Consequen
for scattering orthogonal to the flow direction, the aero
particles are effectively stationary, while, for scattering alo
or against the flow direction, the high speed particles p
duce larger neutron momentum transfers. In effect, the
mentum of the scattered neutrons is Doppler shifted al
the direction of particle motion, and the resulting laborato
scattering patterns are anisotropic. As shown below,
Doppler shift can be used directly to measure the part
speed by means of a suitable Guinier analysis@1,5#.

This paper is organized as follows. Section II reviews a
extends the formalism for the scattered neutron intensity
a stationary aerosol in terms of single particle, intrapartic
and interparticle contributions. The relative importance
each type of contribution is briefly discussed. Section
summarizes the key equations relating the scattered inte
ties in the center of mass~COM! and laboratory~LAB !
frames. These equations also provide the basis for deter
ing the aerosol particle speed by a Guinier analysis of
scattered intensities, and the theoretical results neede
carry out the Guinier analysis are developed here. A su
mary of the results and the conclusions is given in Sec.
PRE 611063-651X/2000/61~1!/557~8!/$15.00
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The Appendix contains a short reprisal of the kinematics
two body scattering in the COM and LAB frames, with th
results cast in a form directly applicable to the aerosol SA
experiments. Some of these results have been obtained
viously in the context of crossed molecular beam scatter
@6,7#.

II. SCATTERED INTENSITY IN THE ABSENCE
OF FLOW

A. General considerations

ConsiderN particles suspended in a scattering volumeV.
Collectively, the particles and solvent are assumed to h
no net momentum, i.e., there is no net flow velocity. T
coherent scattered neutron intensity per unit scattering
ume, I 0 ~units are cm21), is given by the following genera
expression@8#

I 0~q!5V21K U(
j 51

Nn

bj exp~ iq•r j !U2L , ~2.1!

whereNn is the total number of nuclei in the sample,r j is the
position vector of thej th nucleus,bj is its bound coheren
scattering length, andq is the momentum transfer wave ve
tor. The angular brackets denote a thermal equilibrium av
age over all nuclear positions with an appropriate configu
tion space distribution function. As explained in th
Appendix,I 0(q) is equivalent to the coherent component
the differential scattering cross section per unit volume. T
validity of Eq. ~2.1! rests on the first Born approximation
which in effect neglects multiple scattering events. In t
recent aerosol SANS experiments@3,4#, the total volume
fraction of aerosol particles is,1025, the total number den-
sity of particles is about 1012 cm23, and the neutron path
length through the aerosol is about 1 cm, so multiple scat
ing is truly negligible.

As shown by a number of authors@1,9–13#, this equation
for I 0 may be cast into a more practical form that identifi
the contributions to the scattered intensity arising from in
vidual particles and the correlations between particles. H
a similar exercise will be carried out, but with a more d
tailed analysis of the single particle contributions to dra
557 ©2000 The American Physical Society
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558 PRE 61GERALD WILEMSKI
attention to the intraparticle, intermolecular correlation ter
not considered in these other expositions.

As in the work of Kotlarchyk and Chen@9#, the analysis
of Eq. ~2.1! begins by decomposingV into N cells, each
containing one particle. ThusI 0(q) may be expressed as

I 0~q!5 (
c51

N F I c~q!1 (
dÞc

I cd~q!G , ~2.2!

whereI c(q) is the scattered intensity from intracell correl
tions,

I c~q!5V21K U(
j 51

Nc

bj exp~ iq•r j !U2L , ~2.3!

and I cd(q) is the scattered intensity from correlations b
tween two different cells:

I cd~q!5V21K (
j 51

Nc

(
k51

Nd

bjbk exp„iq•~r j2r k!…L . ~2.4!

The sums in the two preceding equations now run over o
the numbersNc andNd of nuclei located in these cells.

B. Single particle and intraparticle terms

The intracell correlations term may first be broken in
sums over the same and different nuclei,

I c~q!5V21(
j 51

Nc Fbj
21K (

kÞ j
bjbk exp„iq•~r j2r k!…L G .

~2.5!

In general, each cell may contain several types of nuclei,
Nac will denote the number of nuclei of typea in cell c,
such that(aNac5Nc . Next each term of the thermal ave
age in Eq.~2.5! may be rewritten as

^exp„iq•~r j2r k!…&5K E
c
E

c
exp„iq•~r 82r 9!…d~r j2r 8!

3d~r k2r 9!dr 8dr 9L , ~2.6!

using the properties ofd functions. The symbol*c indicates
that the integrals are performed over the cell volumeVc .
Now we introduce site-site pair distribution function
gab

(r 8,r 9) for nuclei of typea and b. These functions are
defined as

ra~r 8!rb~r 9!gab
~r 8,r 9!5(

j 51

Nac

(
k51

Nbc

^d~r j2r 8!d~r k2r 9!&

3~12d jkdab
!, ~2.7!

wherera(r 8) is the number density of typea nuclei atr 8,
the sums run over all of the typea and typeb nuclei in the
cell, d(r ) is a three-dimensionald function, and the pair of
Kronecker deltas is introduced to exclude terms with
same nucleus. Because of the presence of the particle-so
interface, each cell is an inhomogeneous subsystem, an
s

-

ly

d

e
ent
the

number densities are functions of position. Similarly,gab

depends on the positions of both nuclei and not just on
distance between them as in a homogeneous system.

After the terms in the double sum of Eq.~2.5! are rewrit-
ten using Eq.~2.6!, then regrouped according to nucleus ty
and replaced using Eq.~2.7!, we introduce the identitygab
5gab2111. The terms associated with the11 are easily
resummed to giveu*crb(r )exp(iq•r )dr u2, whererb(r ) is the
scattering length density at positionr of the cell:

rb~r !5(
a

bara~r !. ~2.8!

Finally, we replacerb(r ) with the scattering length contras
densityDrb(r ),

Drb~r !5rb~r !2rb
s , ~2.9!

whererb
s is the mean scattering length density in the bu

solvent (s), rb
s5(bara

s , which is independent of position
The result of these manipulations is thatI c(q) can be written
as

I c~q!5V21@^ f c
2~q!&V1Ncb

2Sc~q!

1^ f cf c
s* 1 f c

sf c* &V1 f c
sf c

s* #, ~2.10!

which is the sum of a form factor^ f c
2(q)&V , a term involving

a molecular structure factorSc(q), and several other term
that turn out to be unimportant, as shown below. The s
scriptV on the angular brackets in Eq.~2.10! indicates that a
random orientational average should be taken if the resu
the cell volume integrals is not spherically symmetric.

In Eq. ~2.10!, the particle form amplitudef c(q) for cell c
is

f c~q!5E
c
Drb~r !exp~ iq•r !dr . ~2.11!

The form scattering term arises essentially from the shap
the particle as defined by the scattering length contrast d
sity. SinceDrb(r ) generally differs from zero only within
each particle and in its surrounding interfacial zone, E
~2.11! provides an operational definition of a particle
boundary that includes the effects of a diffuse interfacial
gion on the observed scattering.

The last three terms in Eq.~2.10! involve a solvent form
amplitudef c

s(q),

f c
s~q!5rb

sE
c

exp~ iq•r !dr , ~2.12!

which is proportional to a delta functiond(q) when the cell
volume is sufficiently large, as in applications to dilute ae
sols or colloids. For a very concentrated system, this con
tion will not be satisfied. However, it is intuitively plausibl
that, due to cancellation of positive and negative contrib
tions at nonzeroq, the sum of these terms over all cells al
reduces to ad function contribution, which is thus ignorable

The second term in Eq.~2.10! arises from interatomic
correlations on molecular length scales both within the p
ticle and the solvent and, as a result, is not usually con
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PRE 61 559NEUTRON SCATTERING FROM AEROSOLS: . . .
ered in discussions of small angle scattering. Neverthel
its analysis may be of some interest because aerosol par
often occur under conditions that would be considered
treme for bulk liquid samples. For example, in the superso
nozzle experiments@3,4# the liquid D2O nanodroplets are
supercooled and have high internal pressures. Hence higq
scattering experiments could potentially provide new inf
mation about the structure and behavior of liquids at th
unusual conditions.

The structure factorSc(q) is analogous to the observab
structure factor for a homogeneous liquid mixture@14#. It is
defined by the expression

Sc~q!511~Ncb
2!21(

a
(
b

babbK E
c
E

c
ra~r 8!rb~r 9!

3@gab
~r 8,r 9!21#exp„iq•~r 82r 9!…dr 8dr 9L

V

,

~2.13!

whereb2 is the mean square scattering length for the ce

b25Nc
21(

j 51

Nc

bj
2 . ~2.14!

By invoking an arbitrary, but physically reasonable, defi
tion of a particle boundary,Sc(q) may be split into separat
structure factors for the particle~p! and solvent~s! regions
plus a third structure factor for cross correlations betwe
solvent and particle sites. The particle boundary imagin
here is a surface surrounding the particle on which all
densitiesra have reached their bulk solvent values. The v
ume enclosed by this surface should be a minimum in
sense that the surface represents the first points at which
density condition is satisfied along trajectories starting in
particle and ending in the solvent. Obviously, other defi
tions are possible. One disadvantage of this definition is
it may differ slightly from the one described after Eq.~2.11!.
One advantage of it is that the entire solvent phase is no
homogeneous system, which allows its structure factor to
simplified. Equation~2.13! may now be rewritten as

Ncb
2Sc~q!5Nc

pbpc
2 Sc

p~q!1Nc
sbsc

2 Sc
s~q!

12Nc
sbscNc

pbpcHc~q!, ~2.15!

where the numbers of nuclei in each region are defined

Nc
s5Vc

s(
a

ra
s , ~2.16!

Nc
p5Nc2Nc

s , ~2.17!

and the solvent volumeVc
s in the cell is determined by sub

traction once the particle volumeVc
p is determined using the

above definition,Vc
s5Vc2Vc

p . The mean square scatterin
lengths for the particle and solvent,bpc

2 andbsc
2 , respectively,

are defined by equations similar to Eq.~2.14!, and the mean
scattering lengths,bpc and bsc, are defined as, e.g.,bsc
s,
les
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e
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e

5(j
sbj /Nc

s , where the superscripts on ( indicates that only
nuclei in the solvent phase are summed over.

The particle and solvent structure factors appearing in
~2.15! are explicitly defined as

Sc
p~q!511~Nc

pbpc
2 !21(

a
(
b

babbK E
p
E

p
ra~r 8!r

b
~r 9!

3@gab

p ~r 8,r 9!21#exp„iq•~r 82r 9!…dr 8 dr 9L
V

,

~2.18!

Sc
s~q!511~bsc

2 !21(
a

(
b

babbxa
s xb

s rs

3E
s
E

s
@gab

s ~r !21#exp~ iq•r !dr , ~2.19!

wherexa
s is a solvent atom fraction andrs is the total solvent

atom number density. This expression forSc
s(q) is now

equivalent to that for a bulk multicomponent fluid@14#. The
cross correlation structure factorHc(q) is defined as

Hc~q!5~Nc
sbscNc

pbpc!
21(

a
(
b

babb

3ra
s K E

s
E

p
rb~r 9!@gab

sp~r 8,r 9!21#

3exp„iq•~r 82r 9!…dr 8 dr 9L
V

, ~2.20!

wherer 8 always lies withinVc
s andr 9 always lies withinVc

p .
Although the integrations in Eq.~2.20! include the full par-
ticle and solvent volumes in the cell, the effective range
integration in each phase is limited to a thin zone flank
the particle-solvent interface, since bothr 8 and r 9 must be
close to the interface to havegab

spÞ1. This term thus has the

character of a thin shell scatterer and should be less im
tant than eitherSc

p(q) or Sc
s(q). Based on results for bulk

atomic liquids and clusters@14,15#, Sc(q) will not be impor-
tant at the smallq values for which scattering is dominate
by the particle form factor, and will be observable only
largerq. In aerosol applications, the solvent~gas! density is
very low, and theSc

s(q) and Hc(q) terms are negligible.
Standard treatment of experimental data by subtraction of
scattered intensity from particle free solvent would in a
case eliminate the contribution fromSc

s(q). This leaves only
theSc

p(q) term at highq and raises the interesting possibili
of its experimental measurement, which has also been
gested for small atomic clusters by Fosmire and Bulgac@15#.
Thus the main intracell contribution to the observable sc
tered intensity becomes

I c~q!5V21@Pc~q!1Nc
pbpc

2 Sc
p~q!#, ~2.21!

where the particle form factor is defined as

Pc~q!5^ f c
2~q!&V . ~2.22!
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C. Interparticle terms

To complete this formal development, the intercell cor
lation terms defined by Eq.~2.4! must be considered. Excep
for a tiny fraction of solvent sites~those lying very close to
the boundary of two adjacent cells!, distances between site
in different cells will be too large to exhibit atomic leve
correlation effects. Thus only particle-particle correlatio
are of potential importance, and we may proceed along
lines of earlier authors@9–13# to analyze them. First, recall
ing that in Eq.~2.4! r j refers only to nuclei in cellc and r k
refers only to those in celld, these vectors may be replace
by the sum of two new vectors,

r j5Rc1X j , ~2.23!

whereRc is the center of mass vector of the particle in cellc,
and X j is the position of nucleusj relative to the center o
mass. With this substitution, Eq.~2.4! may immediately be
rewritten as

I cd~q!5V21^ f c~q! f d* ~q!exp„iq•~Rc2Rd!…&, ~2.24!

where several terms involving the solvent form amplitudef c
s

have been dropped for reasons similar to those used in
plifying Eq. ~2.10!. This equation is quite general, applyin
to polydisperse systems of particles of any shape, bu
analysis of it that accounts for orientational correlations
tween different particles is not needed in the present c
The liquid aerosol particles studied recently@3,4# are large
enough~radius;10 nm) that the action of surface tensio
should ensure a spherical shape, at least on average
spherical particles, the form amplitudes depend only on
magnitude ofq, and they may be factored from the angu
brackets in Eq.~2.24!. The particles now differ only in their
size and compositional structure~average composition an
density profiles!. Let there beNl particles of typel andNm of
typem, etc. in the volumeV, and letnl be the number density
of type l particles,nl5Nl /V. The sums over cells in Eq
~2.2! may now be rewritten as sums over particle types, a
the total scattered intensity may then be put into the form

I 0~q!5(
l

nlNl
pbpl

2 Sl
p~q!1nP~q!Si~q!, ~2.25!

whereNl
p , bpl

2 , andSl
p(q) now refer to a particular particle

type, but their meanings are otherwise the same as befor
the second term of Eq.~2.25!, which is dominant at lowerq,
n is the total particle densityN/V, P(q) is the number aver-
age particle form factor,

nP~q!5(
l

nl Pl~q!, ~2.26!

wherePl(q) is defined similarly to Eq.~2.22!, andSi(q) is
an interparticle structure factor defined as

Si~q!511„P~q!…21(
l

(
m

xlxmf l~q! f m* ~q!n

3E „glm~R!21…exp~ iq•R!dR, ~2.27!
-

s
e

m-

n
-
e.

For
e

r

d

In

wherexl (5nl /n) is the fraction of typel particles in the
system, andglm(R) is the usual pair distribution function
@12# for a particle of typel and another of typem whose
centers are separated by the distanceR. The aerosols inves
tigated so far have had relatively narrow size distributio
that are fit well by a Gaussian with a standard deviation
about 25% of the mean particle radius@3,4#. For pure par-
ticles, or if a similar spread of compositional variations
assumed for mixed particles, it should be reasonable to
what is sometimes called the decoupling approximation
replaceglm(R) by a meang(R) that is independent of the
types of particles. In this case,Si(q) simplifies to the follow-
ing well-known results@9–13#

Si~q!511B~q!@S~q!21#, ~2.28!

where

S~q!511nE „g~R!21…exp~ iq•R!dR, ~2.29!

and

B~q!5(
l

(
m

xlxmf l~q! f m* ~q!/P~q!. ~2.30!

D. Aerosol considerations

The total scattered intensity given by Eq.~2.25! contains
contributions from both intraparticle scattering and interp
ticle correlations. Because the aerosols under considera
here are so dilute, the mean interparticle separation will
about 103 nm. Thus the main contribution fromSi(q)
should occur at values ofq two orders of magnitude smalle
than those of experimental interest@3,4#, and in theq region
of interest it is expected thatSi(q)'1. In the future, this
assumption will be checked by more thorough calculatio
of Si(q). Since the interparticle correlations are very wea
the scattered intensity should be very well approximated
just the contributions from individual particles, and if th
high q contributions from theSl

p terms are also neglected
Eq. ~2.25! reduces to

I 0~q!5nP~q!. ~2.31!

This relatively simple result forI 0(q) is one of the basic
working equations for the analysis of aerosol SANS expe
ments.

In Sec. III, where the effects of aerosol flow on the sc
tered intensity are treated, the smallq expansion of Eq.
~2.31! is needed. To simplify the analysis of the interpartic
correlation terms, the particles were assumed to be spher
but since these terms do not affect the total scattering,
such restrictions apply to Eq.~2.31!, which holds generally.
It suffices to consider only the behavior ofPl(q). After Eq.
~2.11! is substituted into Eq.~2.22! and a random average i
performed over all orientations ofr (5r 82r 9) with respect
to q, Pl(q) is given by a general result known as the Deb
equation@1,16#:
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Pl~q!5E
Vl

E
Vl

Drb~r 8!Drb~r 9!
sinqr

qr
dr 8 dr 9.

~2.32!

The integrals are taken over the volume of the particle,Vl ,
defined as the region in whichDrbÞ0. Now expand sinqr to
obtain another familiar and general result@1# to leading order
in q2,

Pl~q!5~Vl r̄bl!
2~12q2r Gl

2 /3!, ~2.33!

where the radius of gyrationr Gl for a particle of typel is
defined as

r Gl
2 5~Vl r̄bl!

21E
Vl

Drb~r1!r 1
2 dr1 . ~2.34!

The position vectorr1 in Eq. ~2.34! is measured from the
center of ‘‘mass’’ r0 of the particle defined asr0

5(Vl r̄bl)
21*Vl

Drb(r 8)r 8 dr 8, where the origin forr 8 @and

r 9 in Eq. ~2.32!# is arbitrary. Finally, the mean scatterin
length densityr̄bl appearing in the above equations is d
fined as

Vl r̄bl5E
Vl

Drb~r1!dr1 . ~2.35!

III. SCATTERED INTENSITY WITH FLOW

The aerosol particles are now assumed to move wit
speedvp in the positivex direction of a right-handed three
dimensional Cartesian coordinate system with the scatte
volume at the origin. Neutrons, moving with speedvn , ap-
proach the particles from the negativez direction and are
scattered into the positivez direction. The scattering direc
tion in the LAB frame is defined by the polar angleu with
respect to the LABz axis, and by the azimuthal scatterin
anglef measured from thex axis in the detector plane. A
shown in the Appendix, for this right-angle crossed be
geometry the LAB scattered intensityI is related to the scat
tered intensityI 0 in the COM frame by the equation

I ~q!5I 0~q0!
~j1A11j2!2

A11j2
, ~3.1!

where

j5s sinu cosf, ~3.2!

and

s5vp /vn . ~3.3!

The parameterj contains both the particle-to-neutron spe
ratio s and cosf as key factors. The momentum transf
magnitudes,q and q0, in the respective LAB and COM
frames are equal, and are expressed in laboratory variabl

q25q0
252k2@11~j2cosu!~j1A11j2!#, ~3.4!
-

a

g

as

where the incident neutron wave vectork is related to the
neutron wavelengthl in the usual way:

k52p/l. ~3.5!

Equations~3.1!–~3.4! are valid for the elastic scattering o
neutrons by very massive aerosol particles. They are u
extensively in analyzing the experimental aerosol SANS d
@3,4#, a task requiring that the value ofs be known. One way
to determines is by a Guinier analysis@1,5# of the smallq
behavior of I (q), in which one plots the logarithm of the
scattered intensity versusq2. At small q the plot is linear,
with a slope that is ordinarily proportional to the radius
gyration. Here the slope also depends ons.

For fixedl, smallq is equivalent to very small values o
u and, hence,j, since the speed ratios never exceeds 2 in the
experiments@3,4#. Thus we use Eqs.~2.26!, ~2.31!, and
~2.33!, and expand Eq.~3.1! for small values ofq and j to
obtain, in lowest order,

I ~q!5I ~0!@12q2r G
2 /3#@112j13j2/2#, ~3.6!

where the~extrapolated! scattered intensity atq50 is

I ~0!5(
l

nl~Vl r̄bl!
2, ~3.7!

and the effective radius of gyration is

r G
2 5(

l
nl~Vl r̄blr Gl!

2. ~3.8!

Sinceq itself depends on the as yet unknown particle velo
ity, it is not a useful independent variable. To surmount t
difficulty, we expand Eq.~3.4! for small u to find

q25qi
2~11j1s2 cos2 f!, ~3.9!

where qi is the nominal momentum transfer wave vect
based on the incident (i ) neutron wavelength,

qi5~4p/l!sin~u/2!. ~3.10!

One can also think ofqi as the value ofq for stationary
aerosol particles (vp50). After combining Eqs.~3.6! and
~3.9! and neglecting unimportant higher terms, we obtain

I ~qi !

I ~0!
5112j1

3j2

2
2

qi
2r G

2

3
„j1~112j!~11s2 cos2 f!…

~3.11!

for the explicit velocity dependence of the scattered inten
at small qi . An important feature of this equation is th
cos2 f term, which strongly affects the shape of the anis
tropic scattering pattern. It also affects the slope in Guin
plots based on data point averaging procedures that elimi
odd powers of cosf.

After averaging Eq.~3.11! to find the averaged intensit
Ī (qi), we expand lnĪ(qi) to find

ln Ī ~qi !5 ln I ~0!2qi
2r G

2 @11„129~l/pr G!2/8…as2#/3,
~3.12!

where
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a5cos2 f, ~3.13!

and the overbar represents any average for whichcosp f50
for odd p. Since u is very small, sinu was replaced by
qil/(2p) using Eq.~3.10! to obtain Eq.~3.12!. This result
shows that a Guinier plot of lnĪ(qi) versusqi

2 yields a veloc-
ity dependent slope whose value depends on the type o
erage performed. For example, a circular average~c! over the
azimuthal anglef at constantu ~or qi) yields the valueac
51/2, and a ‘‘horizontal’’ average (h), taken by averaging
pairs of intensities atf50 andp, givesah51. One can then
solve the resulting pair of equations to find the values ofr G

2

ands2 from the two slopes. However, for essentially all pa
ticle sizes of interest we have (l/p)2!r G

2 , and Eq.~3.12!
simplifies to the form

ln Ī ~qi !5 ln I ~0!2qi
2r G

2 ~11as2!/3, ~3.14!

in which thel2 term is gone. The ratio of any two Guinie
slopes is now independent ofr G

2 and depends only on th
known a values and on the unknowns2, which can then be
determined much more easily. It is clear that, to finds by
these means, no assumptions about the shape, compos
uniformity, and size distribution of the particles are require
Recently, this method was used to experimentally determ
the particle velocity@4#.

IV. SUMMARY AND CONCLUSIONS

A theoretical formalism for neutron scattering was an
lyzed for application to the interpretation of crossed be
aerosol SANS experiments. To treat the Doppler shift in
scattered neutron momentum, the kinematic theory of
body scattering was put into a form that is directly applica
to the experimental crossed beam scattering geometry.
theory correctly predicts the observed anisotropy in the s
tered neutron intensity in the LAB frame due to the Dopp
shift @3,4#. Furthermore, with a Guinier analysis of the sc
tered intensity in the lowq region, it was shown how the
anisotropy in the signal can be exploited to measure the
tual particle velocity.
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APPENDIX: KINEMATICAL SCATTERING THEORY

To interpret the measured scattered intensity properly
is necessary to relate the differential scattering cross sec
for the COM and LAB frames. This task requires thatq be
expressed in terms of laboratory variables and parameter
the appropriate scattering geometry. It also involves prop
accounting for the differences in solid angles subtended
the detector by the scattered neutrons as viewed in the C
and LAB frames. Much of Sears’s@17# notation will be used,
and his kinematic analysis will be followed initially. Onl
elastic scattering will be considered.
v-
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The absolute scattered neutron intensity~units are cm21)
in the LAB frame,I (u,f), is defined as

I ~u,f!5
1

V

ds

dV
, ~A1!

where u is the usual LAB scattering angle;f is the azi-
muthal scattering angle measured in the detector plane f
the x axis, which coincides with the direction of particl
motion;V is the scattering volume; andds/dV is the differ-
ential scattering cross section for the aerosol particles m
sured in the LAB frame. Note that, as defined here,s is
directly proportional to the total number of aerosol partic
in V. Thus the quantityI (u,f)dV represents the total num
ber of neutrons scattered into the differential solid an
dV(u,f)(5sinu du df) normalized by the scattering vol
ume and the incident neutron fluxJ.

In the LAB frame, the neutrons and aerosol particles
moving, respectively, with velocitiesvn and vp before the
collision, andJ simply equals the product of the averag
number density of neutrons in the beam,c, and the LAB
neutron speed

J5cvn5cuvnu. ~A2!

Quantities in the COM frame will be designated with th
subscript ‘‘0.’’ Because the absolute number of scatte
neutrons in the two frames must be identical, the differen
scattering cross sections in the two frames are related b

J
ds

dV
dV5J0

ds0

dV0
dV0 , ~A3!

whereJ0 depends onv, the relative speed of the neutron
and aerosol particles:

J05cv5cuvn2vpu. ~A4!

To relateI and I 0, we combine Eqs.~A1! and ~A3! to find

I 5I 0

J0

J

dV0

dV
, ~A5!

where

I 05
1

V

ds0

dV0
. ~A6!

Equation~A5! is useful becauseI 0 is only a function ofu0,
the COM scattering angle and is relatively easy to calcula
To use Eq.~A5! it is necessary to expressu0 in terms of
LAB variables and to evaluatedV0 /dV. To do this, we use
an algebraic approach based on the conservation of mom
tum and energy@17#.

In the LAB frame, the wave vectorsk andK of the neu-
trons and aerosol particles, respectively, are defined as

\k5mnvn , ~A7!

\K5mpvp , ~A8!

wheremn and mp are the neutron and particle masses,
spectively, and\ is Planck’s constant divided by 2p. With a
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prime denoting values after the collision, the conservation
momentum and energy are simply expressed as

k1K5k81K 8 ~A9!

and

k2

mn
1

K2

mp
5

~k8!2

mn
1

~K8!2

mp
. ~A10!

In the COM frame, the scattering problem reduces to
motion of a single particle with reduced massm,

m5mnmp /~mn1mp!, ~A11!

with wave vectorsk0 andk08 before and after the collision:

~mn1mp!k05mpk2mnK , ~A12!

~mn1mp!k085mpk82mnK 8. ~A13!

To evaluatedV0 /dV, we borrow an argument from Sea
~p. 31! @17#. First, we substitute Eq.~A9! into Eq. ~A13! to
obtain

k085k82m~k1K !/mp . ~A14!

Sincek and K are constant vectors, any change ink8 pro-
duces a corresponding change ink08 , and the differential
wave vector volume elementsd3k8 andd3k08 must be equal.
If we use spherical coordinates appropriate to the LAB a
COM frames, this equality takes the form

~k8!2dk8 dV5~k08!2 dk08 dV0 , ~A15!

from which we see that

dV0

dV
5S k8

k08
D 2

dk8

dk08
. ~A16!

At this point, we depart from Sears’s analysis and expresk8
andk08 in terms ofk andK, the incident neutron and particl
momenta in the LAB frame. To do this, we first use Eq.~A9!
to form the dot product ofK 8 with itself. After substituting
this result into Eq.~A10! and noting for our right-angle
crossed beam and detector geometries thatk•K50, k•k8
5kk8 cosu, andk8•K5k8K sinu cosf, we find a quadratic
equation fork8 that yields the physical root

k85k1~k21uk2!1/2, ~A17!

where

k5~m/mp!~k cosu1K sinu cosf! ~A18!

and

u5~mp2mn!/~mn1mp!. ~A19!

Next, sincek•K50, from Eq.~A14! we obtain

~k08!25~k8!222k8k1~m/mp!2~k21K2!, ~A20!

from which it follows that
f

e

d

k08
dk08

dk8
5k82k. ~A21!

Equations~A16! and ~A21! are equivalent to earlier result
obtained mainly by geometric arguments@6,7#. Once Eqs.
~A16!, ~A17!, and ~A21! are substituted into Eq.~A5!, the
desired relationship betweenI and I 0 can be obtained with
just a few more simplifications. We first note that for elas
collisions, energy conservation in the COM frame impli
thatk085k0. @This result may also be demonstrated explici
using Eqs.~A9!, ~A10!, ~A12!, and~A13!#. We then observe
that Eqs.~A2! and ~A4! for the LAB and COM neutron
fluxes can be rewritten asJ5\nk/mn andJ05\nk0 /m. Us-
ing these three simple relations, Eq.~A5! finally emerges as

I 5I 0

mn

m S k8

k D 2 k

Ak21uk2
, ~A22!

which is an exact result for elastic scattering that is limit
only by the assumption of a specific geometry for the in
dent neutron and particle beams (k–K50). This assumption
can easily be relaxed if desired.

With the help of Eqs.~A7!, ~A8!, ~A17!, and~A18!, Eq.
~A22! provides all of the geometric corrections needed
understand the laboratory scattering intensity. What rema
is to treat the additional anisotropy that arises whenI 0 is
expressed as a function of laboratory variables. Scatterin
the COM frame is isotropic, depending only on the CO
scattering angleu0, but u0 itself is a function of both labo-
ratory scattering angles. For the systems under considera
here,I 0 is only a function ofq0, the magnitude of the mo
mentum transfer wave vectorq0, defined as

q05k02k08 . ~A23!

From Eqs.~A23!, ~A7!, ~A8!, and ~A12!, and the definition
of u0,

k0•k085k0
2 cosu0 , ~A24!

it follows that

k05mv/\ ~A25!

and

q052k0 sin~u0/2!. ~A26!

Naturally, q0 depends on the reduced mass and the rela
speedv of the neutrons and aerosol particles.

To expressq0 in terms of the laboratory scattering angle
we substitute Eqs.~A12! and ~A13! into Eq. ~A23!, and use
Eq. ~A9! to eliminateK andK 8. The result, which is readily
apparent on physical grounds, is that the momentum tran
wave vector in the LAB frameq is identical toq0:

q05q5k2k8. ~A27!

We next evaluateq2 from Eq. ~A27!, using Eqs.~A17! and
~A18!, to obtain

q25k2@11u12~j2cosu!„j1~u1j2!1/2
…#, ~A28!
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where

j5k/k. ~A29!

An explicit functional relationship between the COM (u0)
and LAB (u,f) scattering angles is readily obtained b
equatingq0 @Eq. ~A26!# with q @from Eq. ~A28!#. In the
special case of stationary target particles, this relations
reduces to the well-known result@18# tanu5sinu0 /(cosu0
1mn /mp).

When we work in the massive particle limit,mp@mn ,
-

v

ys

J.

g

-

ip

which is appropriate in the present situation, we find thau
51 andj reduces to

j5~vp /vn!sinu cosf. ~A30!

In this limit, Eqs. ~A22! and ~A28! simplify to the results
presented in Sec. III. With Eq.~A30!, it is also easy to see
that the Doppler shift in scatterered neutron momentum v
ishes for scattering orthogonal to the direction of parti
motion (f56p/2).
,
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