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Neutron scattering from aerosols: Intraparticle structure factor, Guinier analysis
of particle speed, and crossed beam kinematics
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A theoretical formalism for neutron scattering from systems of particles is applied to liquid nanodroplet
aerosols. A term arising from intraparticle, intermolecular correlations is identified. The kinematical theory of
two body scattering is recast into a form convenient for interpreting the results of experiments with crossed
beams of neutrons and aerosol particles. Based on a theoretical analysis of the scattered intensity in the Guinier
region, a method for determining the particle velocity directly from the experimental data is outlined. The
method is not restricted by assumptions about particle shape, composition, uniformity, or size distribution.

PACS numbse(s): 82.70.Rr, 61.12.Ex, 61.46w, 61.12.Bt

[. INTRODUCTION The Appendix contains a short reprisal of the kinematics of
two body scattering in the COM and LAB frames, with the

Small angle neutron scatterin@®ANS) is an important results cast in a form directly applicable to the aerosol SANS
technique for studying the structure of materials at the naexperiments. Some of these results have been obtained pre-
nometer scalgl]. When applied to aerosols containing nano-Viously in the context of crossed molecular beam scattering
particles, SANS permits thia situ determination of the aero- [6,7].
sol size distribution and particle characteristics. This
information can lead to improved understanding of aerosol Il. SCATTERED INTENSITY IN THE ABSENCE

A. General considerations

N

12’1 b; exp(ig-rj)

formation processes, which are of great interest for both fun- OF FLOW

damental and practical reasof. Quite recently, aerosols

generated by homogeneous condensation have been studied

with SANS using a supersonic nozzle to generate a steady ConsiderN particles suspended in a scattering voluvhe

aerosol flow directly in the path of the neutron bef8t4]. Collectively, the particles and solvent are assumed to have
The analysis of these crossed beam scattering measur@o net momentum, i.e., there is no net flow velocity. The

ments depends, in part, on the resolution of an interestin§oherent scattered neutron intensity per unit scattering vol-

complication stemming from the relative motion of the neu-Ume, lo (units are cm*), is given by the following general

trons and aerosol particles. The aerosol particles in thesgxPressiori8]

experiments are massive, typically containing more thgh 10 2

water molecules. The nozzle flow field is essentially one di- |o(Q):Vl< > (2.1

mensional, and the mean particle velocity normal to the flow

direction is less than 1% of the flow velocity. Consequently,

for scattering orthogonal to the flow direction, the aerosolwhereN, is the total number of nuclei in the sampiejs the

particles are effectively stationary, while, for scattering alongposition vector of thgth nucleus,b; is its bound coherent

or against the flow direction, the high speed particles proscattering length, and is the momentum transfer wave vec-

duce larger neutron momentum transfers. In effect, the motor. The angular brackets denote a thermal equilibrium aver-

mentum of the scattered neutrons is Doppler shifted alon@ge over all nuclear positions with an appropriate configura-

the direction of particle motion, and the resulting laboratorytion space distribution function. As explained in the

scattering patterns are anisotropic. As shown below, thig\ppendix,l(q) is equivalent to the coherent component of

Doppler shift can be used directly to measure the particléhe differential scattering cross section per unit volume. The

speed by means of a suitable Guinier analy%is]. validity of Eq. (2.1) rests on the first Born approximation,
This paper is organized as follows. Section Il reviews andvhich in effect neglects multiple scattering events. In the

extends the formalism for the scattered neutron intensity forecent aerosol SANS experiment3,4], the total volume

a stationary aerosol in terms of single particle, intraparticlefraction of aerosol particles is 10>, the total number den-

and interparticle contributions. The relative importance ofsity of particles is about 8 cm™3, and the neutron path

each type of contribution is briefly discussed. Section llllength through the aerosol is about 1 cm, so multiple scatter-

summarizes the key equations relating the scattered intensiag is truly negligible.

ties in the center of mas€COM) and laboratory(LAB) As shown by a number of authof$,9—-13, this equation

frames. These equations also provide the basis for determifier |, may be cast into a more practical form that identifies

ing the aerosol particle speed by a Guinier analysis of thé¢he contributions to the scattered intensity arising from indi-

scattered intensities, and the theoretical results needed tadual particles and the correlations between particles. Here

carry out the Guinier analysis are developed here. A suma similar exercise will be carried out, but with a more de-

mary of the results and the conclusions is given in Sec. IVtailed analysis of the single particle contributions to draw
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attention to the intraparticle, intermolecular correlation termsnumber densities are functions of position. Similary,

not considered in these other expositions.

As in the work of Kotlarchyk and Chef9], the analysis
of Eq. (2.1) begins by decomposiny into N cells, each
containing one particle. Thug(g) may be expressed as

(2.2)

N
|o<q>=;1

le(a)+ 2 1eg(q)
d#c
wherel;(q) is the scattered intensity from intracell correla-

tions,
2>

and l.4(q) is the scattered intensity from correlations be-
tween two different cells:

N

121 bjexpliq-r;) (2.3

IC(Q):V_1<

Ne Ng

ch<q>=v-l<]21 gl b;by exp(iq-(r,-—rk>)>. (2.4)

depends on the positions of both nuclei and not just on the
distance between them as in a homogeneous system.

After the terms in the double sum of E@.5) are rewrit-
ten using Eq(2.6), then regrouped according to nucleus type
and replaced using E@2.7), we introduce the identitg, s
=0.5— 1+ 1. The terms associated with thel are easily
resummed to givé[ .pp(r)explq-r)dr|?, wherep,(r) is the
scattering length density at positiorof the cell:

Po(1) =2 bapalr). 2.8
Finally, we replacep,(r) with the scattering length contrast
density A py(r),

Apy(r)=pp(r)—pp, (2.9

where py is the mean scattering length density in the bulk
solvent §), pp==b,p$ , which is independent of position.
The result of these manipulations is thagq) can be written

. . . as
The sums in the two preceding equations now run over only

the numberdN. andNy of nuclei located in these cells.

B. Single particle and intraparticle terms

The intracell correlations term may first be broken into
sums over the same and different nuclei,

NC
Ic(q)zvfljgl bj2+<|§j b;by exp(iq~(rj—rk))>}.

(2.9

In general, each cell may contain several types of nuclei, and

N, will denote the number of nuclei of type in cell c,
such thatz ,N,.=N;. Next each term of the thermal aver-
age in Eq.(2.5) may be rewritten as

<exp(iq-<r,-—rk>>>=<Ucexp(iq(r'—r”))&(rj—r»

X&(rk—r”)dr’dr”>, (2.6

using the properties af functions. The symbqJ . indicates
that the integrals are performed over the cell volue
Now we introduce site-site pair distribution functions
gaﬂ(r’,r") for nuclei of typea and B. These functions are

defined as

N

aC NBC
Pl )pp(r")Ga (1 1") =2
=1

kE (8(r;=r")8(r —r")

=1

X (1= 6jkbay), 2.7)
wherep,(r") is the number density of type nuclei atr’,
the sums run over all of the type and typeB nuclei in the
cell, &(r) is a three-dimensionaf function, and the pair of

lo(@)=V"[(f2(q)) o+ Ncb?S.(q)

F(fefer + o+ fefr ], (2.10
which is the sum of a form factdif2(q)), , a term involving

a molecular structure factd.(q), and several other terms
that turn out to be unimportant, as shown below. The sub-
script() on the angular brackets in E@.10 indicates that a
random orientational average should be taken if the result of
the cell volume integrals is not spherically symmetric.

In Eq. (2.10), the particle form amplitudé.(q) for cell c

fc(q)=JcApb(r)eXp(iqr)dr- (211

The form scattering term arises essentially from the shape of
the particle as defined by the scattering length contrast den-
sity. SinceApy(r) generally differs from zero only within
each particle and in its surrounding interfacial zone, Eq.
(2.17) provides an operational definition of a particle’s
boundary that includes the effects of a diffuse interfacial re-
gion on the observed scattering.

The last three terms in E@2.10 involve a solvent form
amplitudef$(q),

fi(q)=pf,fcexp(iq~r)dr, (2.12

which is proportional to a delta functiof(q) when the cell
volume is sufficiently large, as in applications to dilute aero-
sols or colloids. For a very concentrated system, this condi-
tion will not be satisfied. However, it is intuitively plausible
that, due to cancellation of positive and negative contribu-
tions at nonzera, the sum of these terms over all cells also
reduces to & function contribution, which is thus ignorable.

Kronecker deltas is introduced to exclude terms with the The second term in Eq2.10 arises from interatomic
same nucleus. Because of the presence of the particle-solverdrrelations on molecular length scales both within the par-
interface, each cell is an inhomogeneous subsystem, and tliele and the solvent and, as a result, is not usually consid-
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ered in discussions of small angle scattering. Nevertheles&gsbj INZ, where the superscrigton 3 indicates that only

its analysis may be of some interest because aero_sol particlesclei in the solvent phase are summed over.

often occur un.der. conditions that would b? considered €%~ The particle and solvent structure factors appearing in Eq.
treme for bulk liquid samples. For example, in the SUPErsoni¢s 15 are explicitly defined as

nozzle experiment$3,4] the liquid D,O nanodroplets are

supercooled and have high internal pressures. Hence higher —

scattering experiments could potentially provide new infor- SH(Q)=1+(NEbj) 1> > babﬁ<f fpa(f')pﬁ(f")
mation about the structure and behavior of liquids at these « P PP

unusual conditions. . _ e

The structure facto8.(q) is analogous to the observable XL (r',r") = 1]exp(liq-(r' —r")dr" dr > ,
structure factor for a homogeneous liquid mixt{it]. It is Q
defined by the expression (2.18

Se()=1+(Nb?) 1> % babﬁ< fcfcpa(r’)pﬁ(r”) SU@)=1+(b2) 71 X b bxéxG®

a a B
X[gaﬁ(r’,r”)—1]exp(iq-(r’—r”))dr’dr”> , xff[giﬁ(r)—l]exp(iq-r)dr, (2.19
SJsS

Q

(2.13  wherex: is a solvent atom fraction ansf is the total solvent
. ) atom number density. This expression 8}(q) is now
whereb? is the mean square scattering length for the cell: equivalent to that for a bulk multicomponent fluii4]. The
cross correlation structure factbi.(q) is defined as

NC
b2=N;1Y b?. (2.14 o
=1 He(q) = (NSbsNPb,o) "1 ; b,bg

By invoking an arbitrary, but physically reasonable, defini-

tion of a particle boundanys.(q) may be split into separate ><ps< f f pB(r/r)[gSp(r/’rn)_l]
structure factors for the particlg) and solvent(s) regions “\Jslp “p

plus a third structure factor for cross correlations between
solvent and particle sites. The particle boundary imagined xexpliq-(r' —r”))dr’ dr”> , (2.20
here is a surface surrounding the particle on which all the

densitiesp,, have reached their bulk solvent values. The vol-

ume enclosed by this surface should be a minimum in thevherer’ always lies withinVs andr” always lies withinv?.
sense that the surface represents the first points at which tiagthough the integrations in Eq2.20 include the full par-
density condition is satisfied along trajectories starting in theicle and solvent volumes in the cell, the effective range of
particle and ending in the solvent. Obviously, other defini-integration in each phase is limited to a thin zone flanking
tions are possible. One disadvantage of this definition is thahe particle-solvent interface, since bathandr” must be

it may differ slightly from the one described after E8.11.  close to the interface to hagg’ # 1. This term thus has the

One advantage of it is that_ the entire solvent phase is now Bnharacter of a thin shell scatterer and should be less impor-
homogeneous system, which allows its structure factor to b?ant than eitheiS(q) or SX(q). Based on results for bulk
(9 C "

simplified. Equation2.13 may now be rewritten as atomic liquids and clusteffd 4,15, S.(q) will not be impor-
— > s tant at the smalf values for which scattering is dominated
NcbZSC(Q):Ngbpcsg(q)+N°bS°§’°(q) by the particle f‘(])rm factor, and will be obsgervable only at
+2N§b_SCNEb_pCHC(q), (2.15 largerq. In aerosol applications, the solve(gas densjty is
very low, and theS3(q) and H.(q) terms are negligible.
where the numbers of nuclei in each region are defined as Standard treatment of experimental data by subtraction of the
scattered intensity from particle free solvent would in any
c s . case eliminate the contribution fro8(q). This leaves only
Nc:ch Pas (216 the SP(q) term at highg and raises the interesting possibility
of its experimental measurement, which has also been sug-
gested for small atomic clusters by Fosmire and Bul[d&g.
Thus the main intracell contribution to the observable scat-
tered intensity becomes

Q

NP=N,— NS, (2.17)

and the solvent volum¥? in the cell is determined by sub-
traction once the particle volumé is determined using the | V- YP.(q)+NPH2.SP 22
above definitionV3=V,—V?. The mean square scattering () [Pe(a)+ NebpeScla)] 229
lengths for the particle and solvellmﬁC andbﬁc, respectively, where the particle form factor is defined as
are defined by equations similar to E§.14), and the mean

i b.. and b, i bee Pe(a)=(fé(a)) (2.22
scattering lengthsb,. and b, are defined as, e.ghs. c(q (@))a- .
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C. Interparticle terms wherex, (=n,/n) is the fraction of typd particles in the

To complete this formal development, the intercell corre-SYStem, andyim(R) is the usual pair distribution function
lation terms defined by Eq2.4) must be considered. Except [12] for @ particle of typel and another of typen whose
for a tiny fraction of solvent sitegthose lying very close to CeNters are separated by the distaRc&@he aerosols inves-
the boundary of two adjacent cellslistances between sites tigated SO far have had relgt|vely narrow size d|str_|bl_Jt|ons
in different cells will be too large to exhibit atomic level that are fit well by a Gaussian with a standard deviation of
correlation effects. Thus only particle-particle correlations@20ut 25% of the mean particle radil&4]. For pure par-
are of potential importance, and we may proceed along thticles, or if a S|_m|Iar spr_ead qf compositional variations is
lines of earlier authorf9—13 to analyze them. First, recall- assumed for mixed particles, it should be reasonable to use
ing that in Eq.(2.4) r; refers only to nuclei in celt andr, what is sometimes called the decou_pll_ng approximation and
refers only to those in cell, these vectors may be replaced '€Placegim(R) by a meang(R) that is independent of the

by the sum of two new vectors types of particles. In this casg,(q) simplifies to the follow-
' ing well-known result§9-13

rj: RC+Xj , (223)
=1+B -1], 2.2
whereR. is the center of mass vector of the particle in cell S (@IS(@)—1] (2.28
and X; is the position of nucleug relative to the center of
mass. With this substitution, E42.4) may immediately be Where
rewritten as
lea(q) =V~ Xfe(a) 5 (@expliq-(Re—Ry))), (2.24 S(q)=1+nf (9(R)—Dexpig-R)dR,  (2.29

where several terms involving the solvent form amplitdifle

have been dropped for reasons similar to those used in sirﬁi—nd
plifying Eq. (2.10. This equation is quite general, applying
to polydisperse systems of particles of any shape, but an _ %
analysis of it that accounts for orientational correlations be- B(q)_2| % XXmf1(Q) Trm(a)/P(Q). (2:30
tween different particles is not needed in the present case.

The liquid aerosol particles studied recenit8;4] are large

enough(radius~10 nm) that the action of surface tension D. Aerosol considerations

should ensure a Spherical Shape, at least on average. ForThe total scattered intensity given by Hq_25) contains
spherical particles, the form amplitudes depend only on thgontributions from both intraparticle scattering and interpar-
magnitude ofg, and they may be factored from the angularticle correlations. Because the aerosols under consideration
brackets in Eq(2.24). The particles now differ only in their here are so dilute, the mean interparticle separation will be
size and compositional structufaverage composition and zpout 186 nm. Thus the main contribution frons (q)
density profiles Let there beN, particles of typd andN,, of  should occur at values a@f two orders of magnitude smaller
typem, etc. in the volum&/, and letn, be the number density than those of experimental interé8t4], and in theq region
of type | particles,n;=N;/V. The sums over cells in EqQ. of interest it is expected tha(q)~1. In the future, this
(2.2) may now be rewritten as sums over particle types, anéhssumption will be checked by more thorough calculations
the total scattered intensity may then be put into the form of 5(q). Since the interparticle correlations are very weak,
the scattered intensity should be very well approximated by
_ PH2 P just the contributions from individual particles, and if the
'o(a) §|: MNPEES (@) FnP(@)S(@). (229 high g contributions from theSP terms are also neglected,
o Eq. (2.25 reduces to
whereN}, bf,,, andSP(q) now refer to a particular particle
type, but their meanings are otherwise the same as before. In lo(a)=nP(q). (2.3D
the second term of Eq2.25), which is dominant at loweg,

n is the total particle densiti/V, P(q) is the number aver- This relatively simple result foi(q) is one of the basic

age particle form factor, working equations for the analysis of aerosol SANS experi-
ments.
nP(q)=3 nP(q), (2.26 In Sec. lll, where the effects of aerosol flow on the scat-

tered intensity are treated, the smallexpansion of Eq.
(2.31) is needed. To simplify the analysis of the interparticle
whereP,(q) is defined similarly to Eq(2.22, andS;(q) is  correlation terms, the particles were assumed to be spherical,
an interparticle structure factor defined as but since these terms do not affect the total scattering, no
such restrictions apply to Eg2.31), which holds generally.
_ * It suffices to consider only the behavior Bf(q). After Eq.
Si(@)=1+(P(a)) 12,: % XXmf Q) Trm(@)N (2.1)) is substituted into Eq(2.22 and a random average is
performed over all orientations of (=r'—r") with respect
to g, P,(q) is given by a general result known as the Debye

Xf @n(R)=Dexplig-R)dR, (220 o ation[1,16]
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sinqr where the incident neutron wave vectoiis related to the
dr’ dr”. neutron wavelength in the usual way:

qr
(2.32 k=2m/\. (3.5

P|(Q)=fvlflepb(r')Apb(r")

The integrals are taken over the volume of the partitle,  Equations(3.1)—(3.4) are valid for the elastic scattering of
defined as the region in whickp, # 0. Now expand siqrto  neutrons by very massive aerosol particles. They are used
obtain another familiar and general requlfto leading order  extensively in analyzing the experimental aerosol SANS data
in g2, [3,4], a task requiring that the value sbe known. One way
_ to determines is by a Guinier analysi§l,5] of the smallq
Pi(q)=(Vipp)3(1—q%r5/3), (2.33  behavior ofl(q), in which one plots the logarithm of the
scattered intensity versug’. At small q the plot is linear,
where the radius of gyrationg, for a particle of typel is  with a slope that is ordinarily proportional to the radius of
defined as gyration. Here the slope also dependsson
For fixed\, smallq is equivalent to very small values of
2, -1 2 0 and, henceg, since the speed ratinever exceeds 2 in the
rai=Vipp) fVIApb(rl)rldrl' (2.34 experiments[3,4]. Thus we use Eqs(2.26, (2.31), and
(2.33, and expand Eq3.1) for small values ofg and ¢ to
The position vector; in Eq. (2.34 is measured from the obtain, in lowest order,

center of “mass” ro of the particle defined asr _ 50 5
=(Vipp)) v, App(r)r' dr’, where the origin for” [and H@)=HOM1-areBI[L+2¢+3852), (3.6
r” in Eq. (2.3@ is arbitrary. Finally, the mean scattering where the(extrapolategl scattered intensity aj=0 is
length densityp,,, appearing in the above equations is de-

fined as 10)=2 m(Vipon)?, (3.7
|
Vippi= fv App(ry)dry. (2.35  and the effective radius of gyration is
|
ré=$ Ni(Vippir o). (3.9

IIl. SCATTERED INTENSITY WITH FLOW

The aerosol particles are now assumed to move with &jnceq itself depends on the as yet unknown particle veloc-

speedv, in the positivex direction of a right-handed three- ity it is not a useful independent variable. To surmount this
dimensional Cartesian coordinate system with the scatteringtficulty, we expand Eq(3.4) for small ¢ to find

volume at the origin. Neutrons, moving with speeg, ap-

proach the particles from the negatizedirection and are 0?=q2(1+ £+5°cod ¢), (3.9
scattered into the positive direction. The scattering direc- ) )

tion in the LAB frame is defined by the polar anglewith ~ Whereg; is the nominal momentum transfer wave vector
respect to the LABz axis, and by the azimuthal scattering Pased on the incident) neutron wavelength,

angle ¢ measured from th& axis in the detector plane. As _ :

shown in the Appendix, for this right-angle crossed beam 6= (4/\)sin(6/2). (310
geometry the LAB scattered intensitys related to the scat- One can also think ofy; as the value ofy for stationary
tered intensityl, in the COM frame by the equation aerosol particles\(,=0). After combining Egs(3.6) and
(3.9 and neglecting unimportant higher terms, we obtain

(£+V1+8)?
Ha)=lo(Ao)—F=—=— 3. l(a: 2 422
T %=1+2§+37—%(§+(1+2§)(1+520052¢))
where (3.11)
£=ssin0cose, 3.2 for the explicit velocity dependence of the scattered intensity

at smallqg;. An important feature of this equation is the

cog ¢ term, which strongly affects the shape of the aniso-

tropic scattering pattern. It also affects the slope in Guinier

S=v./V. . 3.3 plots based on data point averaging procedures that eliminate
pron odd powers of cos.

d_ After averaging Eq(3.1)) to find the averaged intensity

and

The parameteg contains both the particle-to-neutron spee g
ratio s and cosp as key factors. The momentum transfer | (di), we expand In(q) to find

magnitudes,qg and qq, in the respective LAB and COM — 2.2 )
frames are equal, and are expressed in laboratory variables asM ! (41) =In1(0) = qirg[1+ (1= 9(\/ 7 ) /8)332](/3'12)

P=q3=2k[1+(£—cosh)(é+V1+€2)], (B4  where
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a=co? ¢, (3.13  The absolute scattered neutron intensityits are cm h
in the LAB frame,l (6, ¢), is defined as

and the overbar represents any average for whah ¢p=0 14
for odd p. Since 6 is very small, sird was replaced by 16 ¢):__‘T (A1)
qi\/(2) using Eq.(3.10 to obtain Eq.(3.12. This result ' VdQ'’
shows that a Guinier plot of I(g;) versusq; yields a veloc- where ¢ is the usual LAB scattering angle) is the azi-
ity depen(fjent StlepFe whose vlalue o_Iep?nds on the typti of ¥nuthal scattering angle measured in the detector plane from
erage pertormed. For example, a circular averagever the the x axis, which coincides with the direction of particle
azimuthal anglas _at constan® (or ;) ields the valuea_c motion; V is the scattering volume; ardbr/d(} is the differ-
:y 2, a_nd a _horlzontal averag_em, taken by averaging ential scattering cross section for the aerosol particles mea-
pairs of intensities app=0 andsr, givesa,,= 1. One can then

) ) - _ sured in the LAB frame. Note that, as defined herejs
solve the resulting pair of equations to find the valuesof directly proportional to the total number of aerosol particles

e_mdszifrom the two slopes. HOWGV%E fgf essentially all par-jn v/ Thus the quantity (8, ¢)dQ represents the total num-
ticle sizes of interest we have\(m)°<rg, and Eq.(3.12  per of neutrons scattered into the differential solid angle

simplifies to the form dQ (6, $)(=sinfdode) normalized by the scattering vol-
_ - ume and the incident neutron flulx
In1(q)=In1(0)—qfrg(1+as’/3, (3.14 In the LAB frame, the neutrons and aerosol particles are

moving, respectively, with velocities, and v, before the
collision, andJ simply equals the product of the average
number density of neutrons in the beam,and the LAB
neutron speed

in which the\? term is gone. The ratio of any two Guinier
slopes is now independent of and depends only on the
known a values and on the unknows?, which can then be
determined much more easily. It is clear that, to fstdy
thgse means, no ass_um_ptio_ns about the _shape, Comp(_)sition, J=cv,=c|v,|. (A2)
uniformity, and size distribution of the particles are required.
Recently, this method was used to experimentally determine Quantities in the COM frame will be designated with the
the particle velocity[4]. subscript “0.” Because the absolute number of scattered
neutrons in the two frames must be identical, the differential
IV. SUMMARY AND CONCLUSIONS scattering cross sections in the two frames are related by

A theoretical formalism for neutron scattering was ana- do oo
lyzed for application to the interpretation of crossed beam I3 402 =Jogq 0. (A3)
aerosol SANS experiments. To treat the Doppler shift in the 0
scattered neutron momentum, the kinematic theory of tWQyhere J, depends orv, the relative speed of the neutrons
body scattering was put into a form that is directly applicableang aerosol particles:
to the experimental crossed beam scattering geometry. The
theory correctly predicts the observed anisotropy in the scat- Jo=cv=c|v,— V. (A4)
tered neutron intensity in the LAB frame due to the Doppler
shift [3,4]. Furthermore, with a Guinier analysis of the scat- T0 relatel andl,, we combine Eqs(Al) and (A3) to find
tered intensity in the lowg region, it was shown how the

anisotropy in the signal can be exploited to measure the ac- | = ﬁ dQ, (A5)
tual particle velocity. °J dQ
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the University of Missouri Research Board. the COM scattering angle and is relatively easy to calculate.
To use EQ.(A5) it is necessary to expreg in terms of
APPENDIX: KINEMATICAL SCATTERING THEORY LAB variables and to evaluat@(),/d{}. To do this, we use

. . . .an algebraic approach based on the conservation of momen-
To interpret the measured scattered intensity properly, i, and energy17].

is necessary to relate the differential scattering cross sections |, the LAB frame. the wave vectols andK of the neu-

for the COM and LAB frames. This task requires tiigbe  ,nq and aerosol particles, respectively, are defined as
expressed in terms of laboratory variables and parameters for

the appropriate scattering geometry. It also involves properly fik=myV,, (A7)
accounting for the differences in solid angles subtended at
the detector by the scattered neutrons as viewed in the COM AK=mpv,, (A8)

and LAB frames. Much of Sears[47] notation will be used,
and his kinematic analysis will be followed initially. Only wherem, and m, are the neutron and particle masses, re-
elastic scattering will be considered. spectively, andi is Planck’s constant divided by2 With a
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prime denoting values after the collision, the conservation of dk)
momentum and energy are simply expressed as ki— =k’ —«. (A21)
dk’
k+K=k'+K' (A9)

Equations(A16) and (A21) are equivalent to earlier results
and obtained mainly by geometric argumern&7]. Once Egs.
) ) o 2 (A16), (A1l7), and (A21) are substituted into EqA5), the
k_ K_: (k') +(K ) (A10) desired relationship betwednandl, can be obtained with
m, m, My m, just a few more simplifications. We first note that for elastic
) collisions, energy conservation in the COM frame implies
In the COM frame, the scattering problem reduces 10 thepatk: = k. [This result may also be demonstrated explicitly
motion of a single particle with reduced mass using Eqs(A9), (A10), (A12), and(A13)]. We then observe
that Egs.(A2) and (A4) for the LAB and COM neutron
fluxes can be rewritten ab=#Ank/m, andJy=Anky/w. Us-
ing these three simple relations, E&5) finally emerges as

m=mymy/(m,+mp), (A11)

with wave vectork, andk, before and after the collision:

= - my, [ k'\? k
(Mp+my)ko=myk—myK, (A12) |=|0—”(— | (A22)
m\ K k24 uk?
(my+mg)kg=mpk’ —m,K". (A13)

which is an exact result for elastic scattering that is limited
To evaluated(),/d(), we borrow an argument from Sears gnly by the assumption of a specific geometry for the inci-
(p. 31 [17]. First, we substitute EqA9) into Eq.(A13) to  gent neutron and particle bearrs-K =0). This assumption
obtain can easily be relaxed if desired.
;L With the help of Eqs(A7), (A8), (A17), and(A18), Eq.
Ko=k'—p(k+K)/my. (A14) (A22) provides all of the geometric corrections needed to
understand the laboratory scattering intensity. What remains
is to treat the additional anisotropy that arises whgns
expressed as a function of laboratory variables. Scattering in
he COM frame is isotropic, depending only on the COM
cattering anglé,, but 6, itself is a function of both labo-
ratory scattering angles. For the systems under consideration
(k")2dK’ dQ = (k})2 dk} dQ (A15) here, | is only a function ofgg, the magnitude of the mo-
0 0 mentum transfer wave vectoy, defined as

Sincek andK are constant vectors, any changekinpro-
duces a corresponding change ki, and the differential
wave vector volume elementSk’ andd®k, must be equal.
If we use spherical coordinates appropriate to the LAB an
COM frames, this equality takes the form

from which we see that

do=Ko—Kp- (A23)
do, (k'\?dk . -—
O = (A16) rom Eqgs.(A23), (A7), (A8), and(A12), and the definition
dQ 1k} dkj of 6y,
At this point, we depart from Sears’s analysis and expkéss Ko-ko=k& cosby, (A24)

andkg in terms ofk andK, the incident neutron and particle
momenta in the LAB frame. To do this, we first use B49) it follows that
to form the dot product oK’ with itself. After substituting

this result into Eq.(A10) and noting for our right-angle Ko= pv/ (A25)

crossed beam and detector geometries kha¢=0, k-k’ and

=kk' cosé, andk’-K=Kk’K sinfcos¢, we find a quadratic

equation fork’ that yields the physical root Qo= 2Kkq Sin( 6,/2). (A26)
k'=Kk+(k*+uk?)? (A17)  Naturally, g, depends on the reduced mass and the relative

speedv of the neutrons and aerosol particles.
To express) in terms of the laboratory scattering angles,
we substitute Eq9A12) and (A13) into Eq. (A23), and use
Eqg. (A9) to eliminateK andK'. The result, which is readily
and apparent on physical grounds, is that the momentum transfer
wave vector in the LAB frame is identical toqg:

where

k=(u/m,)(k cosf+K sing cose) (A18)

u=(my—m,)/(my+my). (A19)
Jgo=q=k—k’'. (A27)
Next, sincek-K=0, from Eq.(A14) we obtain
We next evaluate? from Eq. (A27), using Eqs(A17) and
(k(’))zz(k’)z—2k’K+(,u/mp)2(k2+ K?), (A20) (A18), to obtain

from which it follows that q°=k?[1+u+2(£—cosh)(é+(u+&2)Y?], (A29)
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where which is appropriate in the present situation, we find that
=1 and¢ reduces to
&= klk. (A29)
An explicit functional relationship between the COM,] §=(vp/vn)sing cosg. (A30)

and LAB (6,¢) scattering angles is readily obtained by

equatingqgy [Eq. (A26)] with q [from Eq. (A28)]. In the In this limit, Egs. (A22) and (A28) simplify to the results
special case of stationary target particles, this relationshipresented in Sec. Ill. With EqA30), it is also easy to see
reduces to the well-known resUl18] tand=sin,/(cosf, that the Doppler shift in scatterered neutron momentum van-

+m,/mp). ishes for scattering orthogonal to the direction of particle
When we work in the massive particle limitg,>m,, motion (¢= * 7/2).
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